

Exploring the Benefits of Modern Roundabouts

Wednesday, December 4, 2019

City of Franklin, TN

Why have roundabouts become an attractive choice for intersections?

- Increased Safety reduced injury crash frequency
- Operational Efficiency higher intersection capacities in most cases
- Difficult Geometry more than 5 legs
- Wide Nodes/Narrow Roads
- Safer for Pedestrians
- Reduced Costs (Lifecycle) collision reduction savings (societal) are substantial
- Quality of Life improved retail access, community gateways, aesthetics, harmonized transportation and land use ("complete streets")

U.S. sites by state c. 2013

4th International Conference on Roundabouts, Seattle, WA, April 2014.

Historical Concerns

Source: NCHRP Synthesis 264

Benefits

- Can improve safety
 - Vehicle
 - Pedestrian / Bicyclists
- Can improve operations
 Higher capacity, less delay
- Can reduce footprint

Traffic Control Prior to RBT	% Reduction in Injury Crashes		
Signalized	78		
All-Way Stop	46		
Two-Way Stop	82		
NCHRP 672, Exhibit 5-15			
Chance of pedestrian de vehic 20 mph 32 km/h 5% 30 mph 50 km/h 40%	eath if hit by a motor cle		
40 mph 65 km/h	80%		
50 mph 80 km/h NCHRP 572, Table 28	100%		

What a Modern Roundabout is not...

Neighborhood Circle

Nonconforming Traffic Circle

What is a modern roundabout?

- A compact circular intersection in which traffic flows counterclockwise around a center island
- Entering traffic yields
- Approaches are channelized to deflect traffic into a proper entry path
- Designed to slow the speed of vehicles

Traffic Flow (comparable to Mallory/Liberty Pike)

Physical Features

Type of Crashes

Typical 4-leg intersection

Avoidable Collisions Severe Angle and turning movement collisions are avoidable

At a Roundabout		
Low speeds		
Situation changes slowly/More Perception Reaction Time		
Low energy crashes		
Forgiving environment		
Low severity crashes		
Gap-seeking can be complex		
Narrow visual scans required		
Traffic from one direction		

Uncontested Safety History with injury reduction stats.

(FHWA/NCHRP Report 888) Table 2-6. CMFs for conversion of stop-control and signalized intersections to a roundabout.

Treatment	Setting	Crash Type		Source
		All	Injury	Source
TWSC to single-lane roundabout	Rural	0.29	0.13	HSM 2010
	Suburban	0.22	0.22	HSM 2010
	Urban	0.61	0.22	HSM 2010
TWSC to two-lane roundabout	Suburban	0.81	0.32	HSM 2010
	Urban	0.88	-	HSM 2010
TWSC to single-lane or two-lane roundabout	Suburban	0.68	0.29	HSM 2010
	Urban	0.71	0.19	HSM 2010
	All	0.56	0.18	HSM 2010
AWSC to single-lane or two-lane roundabout	All	1.03	-	HSM 2010
Signal to single-lane roundabout	All	0.74	0.45	Gross et al. 2010
Signal to two-lane roundabout	Suburban	0.33	-	HSM 2010
	All	0.81	0.29	Gross et al. 2010
Signal to single-lane or two-lane roundabout	Suburban	0.58	0.26	Gross et al. 2010
	Urban	0.99	0.40	HSM 2010
	Urban	1.15	0.45	Gross et al. 2010
	3-approach	1.07	0.37	Gross et al. 2010
	4-approach	0.76	0.34	Gross et al. 2010
	All	0.52	0.22	HSM 2010
	All	0.79	0.34	Gross et al. 2010

NOTES: TWSC = two-way stop-controlled; AWSC = all-way stop-controlled.

Compare Traffic Operations

Roundabouts and Driveway Access

Place-making using roundabouts...

Before

Trucks in Roundabouts

Roundabouts next to schools

Work with young drivers

Roundabouts and Pedestrian Safety

- Roundabouts that replace stop signs and traffic signals have reduced the number of and severity of pedestrian crashes throughout the world.
- Pedestrian injuries have been reduced by as much as 89 percent.
- Roundabouts are safer for pedestrians than other intersection control types because:
 - ► They minimize vehicle speeds
 - ► There are fewer opportunities for crashes to occur
 - They maximize drive and pedestrian awareness
 - ► They minimize pedestrian exposure to traffic

Compare Crossing Risks

- Longer crossing
- Traffic from 3 directions
- High speed crossing

- Short crossing
- Traffic from 1 direction
- Low speed crossing

Crossing a Roundabout

School Crossings

Roundabouts Maximize Driver and Pedestrian Awareness

- Pedestrian crashes that happen when motorists run red signals, miss stop signs, and make right-turn-on-red movements do not happen at roundabouts
- The yield rule also encourages pedestrians to make sure motorists see them before crossing, eliminating the sense of security present at stop signs and signals
- There is no guaranteed stop condition at any intersection, so pedestrians and motorists need to pay attention to each other

Alternative Crosswalk Traffic Control

Rectangular Rapid
Flashing Beacon (RRFB)

Groundmounted regulatory signs – on the medians

Local Education is Needed

Sample Turning Movements Right Turn / Continue Straight Continue Straight / Left Turn / U-turn

Driving a Roundabout **Turn by Turn**

0

U.S.Department of Transportation

Federal Highway Administration

 Observe all standard road rules, including yielding for pedestrians in crosswalks.

To safely and efficiently drive a roundabout:

Slow down.

- Read advance signing and choose correct lane.
- Yield to traffic in all lanes on your left before entering.

Stay in your lane to your exit.

May 2013

Always obey the signs and markings

ONE WAY

As you get closer to the roundabout entrance, it is very important to observe the signs and arrows to determine which lane to use before entering a roundabout. Signs above the road and white arrows on the road will show the correct lane to use.

Roundabout ahead, slow down. rou

Guide signs near the entry to a Yield to all traffic in roundabout show lane designations. the roundabout.

Roundabout traffic travels one-way.

The 3-E's of Traffic Management: Engineering Education Enforcement

The entering driver (red) is at fault due to failure to yield to the circulating vehicle (green).

The driver in the inside lane of the roundabout can either exit or continue circulating. Entering vehicles must yield to **all** traffic coming from the left.

Questions?